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ABSTRACT

This letter describes a single flask strategy to the synthesis of r-C-glycosides from glycals. This protocol couples a glycal epoxidation
reaction with a C-2 alkoxy-directed carbon−carbon bond-forming reaction.

Due to their increased stability to hydrolysis as well as their
presence in a number of interesting natural products, C-
glycosides have received a great deal of attention from the
synthesis and medicinal chemistry community.1 While this
attention has led to a number of elegant approaches to their
synthesis, to the best of our knowledge there is no readily
available method that enables one to predictably generate
R- or â-C-glycosides from a single glycosyl donor.

Among the many glycosyl donors that have been utilized
in C-glycoside synthesis, 1,2-anhydroglycosides have re-
ceived a significant amount of attention of late. This is largely
due to their utility in the synthesis of C-glycosides having a
trans-relationship between the C-2 hydroxy group and the
anomeric C-C bond through their coupling with carbon
nucleophiles.2,3 Another reason that these epoxides have

become attractive is that they can be generated from the
reaction of the corresponding glycal with dimethyldioxirane
under very mild conditions.4 This enables one to bypass the
isolation of relatively unstable glycosides containing ano-
meric leaving groups, as it is not necessary to isolate the
epoxide prior to the addition of carbon nucleophiles (Scheme
1).

In the course of our recently completed formal total
synthesis of hemibrevetoxin B using C-glycoside technology
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we found that trimethylaluminum efficiently transferred a
methyl group to bicyclic epoxide4 in a syn-fashion to
provide5 (eq 1).5-7 While the reaction proceeded reasonably
well in a number of solvents, we were intrigued by the
observation that the highest coupling yields occurred when
the reaction was carried out in nonpolar solvents. This led
us to suspect that the transfer of a methyl group from an
intermediate aluminate complex might be important.

We set out to explore the scope of this chemistry, as it
would complement the aforementioned anti-selective addition
of other carbon nucleophiles to glycal epoxides. That is, if
the aluminum chemistry proved to be general we would be
able to construct eitherR- or â-C-glycosides from a single
glycal epoxide by simply varying the counterion on the
nucleophile.

With these goals in mind, we set out to investigate the
coupling of 3,4,6-tri-O-benzyl-D-glucal epoxide2 with alkyl,
aryl, alkynyl, vinyl, and allyl aluminum reagents (Table 1).
As had occurred in the4 f 5 transformation, the transfer of
a methyl group from Me3Al occurred from the same face as
the C-2 alkoxy group and resulted in a syn relationship
between the newly formed C-O and C-C bonds (entry 1).8

As the addition of dimethyl cuprate to2 gives the corre-
sponding anti-addition product,9 this experiment effectively
demonstrates that it is possible to control the C-glycoside
stereochemistry by simply varying the counterion on the
nucleophile.

The aluminum chemistry was also applicable to other
nucleophiles; the corresponding alkynyl,10 vinyl, phenyl, and
furyl aluminum reagents also providedR-C-glycosides in

high yield when coupled with2.9 Interestingly, while both
dimethylalkynyl aluminum11 and trimethyl aluminum trans-
ferred alkynyl and methyl groups, respectively, at low
temperature,8 the transfer of a vinyl group from dimethylvinyl
aluminum required relatively elevated temperatures to effect
transfer in moderate yields. Unfortunately, at elevated
temperatures methyl transfer became competitive with vinyl
transfer (entry 4). These problems were circumvented by
turning to trivinylaluminum. R-Vinyl glycoside 8 was
isolated in 76% yield when 6 equiv of trivinyl aluminum
were used, and the reaction was allowed to warm from-65
°C to room temperature (entry 6).12f Fewer equivalents of
trivinylaluminum gave lower yields of8 with significant
quantities of oligomeric sugars (entry 5). By using the
conditions that were optimized for the vinyl addition, the
transfer of phenyl from triphenyl aluminum and 2-furyl from
trifuryl aluminum gave the correspondingR-C-glycosides9
and 10 in 79% and 85% yield, respectively (entries 7 and
8).12 In our hands, allyl transfer from triallyl aluminum has
been more problematic and has yielded mixtures ofR- and
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oil.
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â-allyl glycosides (entry 9). Presumably,â-allyl products
come from a competitive intermolecular allyl transfer reac-
tion.13

We were of the opinion that the presence of MgCl2 from
the synthesis of triallylaluminum was responsible for the
somewhat disappointing results with triallylaluminum.13 In
an effort to overcome these problems, we targeted the transfer
of allyl from triallylborane. We were attracted to boron for
two reasons. First, when reacting with2, it should transfer
its ligands intramolecularly via a “borate” complex. Second,
triallylborane can be purified.14 In the event, we were
extremely pleased to find that the exposure of2 to freshly
distilled triallylborane at-60 °C resulted in a 13:1 mixture
of R- andâ-allyl-glycosides respectively in 70% yield (eq
2).

The syn addition reactions appear to be occurring via the
mechanism outlined in Scheme 2. Aluminum or boron
complexation to the epoxide is followed by oxonium ion
formation to provide13. Intramolecular ligand transfer to
the oxonium ion then gives the isolated products after
hydrolysis.

To conclude, we have demonstrated that C-glycosides
having a cis relationship between a C-2 alkoxy group and a
C-1 carbon-carbon bond can be generated via the addition

of aluminum or boron reagents to glycal epoxides. These
coupling reactions nicely complement the previously reported
anionic couplings to these same epoxides and represent the
first examples of the predictable formation ofR- or â-C-
glycosides from a single glycosidic donor. Current efforts
are focused on the continued examination of these reactions
as well as their application to the synthesis of fused
polyether-containing natural products.
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